14,749 research outputs found

    Correspondence

    Get PDF

    Branes are Waves and Monopoles

    Get PDF
    In a recent paper it was shown that fundamental strings are null waves in Double Field Theory. Similarly, membranes are waves in exceptional extended geometry. Here the story is continued by showing how various branes are Kaluza-Klein monopoles of these higher dimensional theories. Examining the specific case of the E7 exceptional extended geometry, we see that all branes are both waves and monopoles. Along the way we discuss the O(d; d) transformation of localized brane solutions not associated to an isometry and how true T-duality emerges in Double Field Theory when the background possesses isometries.Comment: 32 pages, Latex, v2, typos correcte

    Quasilinear spin voltage profiles in spin thermoelectrics

    Full text link
    Recent experiments show that spin thermoelectrics is a promising approach to generate spin voltages. While spin chemical potentials are often limited to a surface layer of the order of the spin diffusion length, we show that thermoelectrically induced spin chemical potentials can extend much further in itinerant ferromagnets with paramagnetic impurities. In some cases, conservation laws, e.g., for a combination of spin and heat currents, give rise to a linear spin voltage profile. More generally, we find quasilinear profiles involving a spin thermoelectric length scale which far exceeds the spin diffusion length.Comment: 4+ page

    Structure and dynamics of binary liquid mixtures near their continuous demixing transitions

    Get PDF
    The dynamic and static critical behavior of five binary Lennard-Jones liquid mixtures, close to their continuous demixing points (belonging to the so-called model H' dynamic universality class), are studied computationally by combining semi-grand canonical Monte Carlo simulations and large-scale molecular dynamics (MD) simulations, accelerated by graphic processing units (GPU). The symmetric binary liquid mixtures considered cover a variety of densities, a wide range of compressibilities, and various interactions between the unlike particles. The static quantities studied here encompass the bulk phase diagram (including both the binodal and the λ\lambda-line), the correlation length, the concentration susceptibility, the compressibility of the finite-sized systems at the bulk critical temperature TcT_c, and the pressure. Concerning the collective transport properties, we focus on the Onsager coefficient and the shear viscosity. The critical power-law singularities of these quantities are analyzed in the mixed phase (above TcT_c) and non-universal critical amplitudes are extracted. Two universal amplitude ratios are calculated. The first one involves static amplitudes only and agrees well with the expectations for the three-dimensional Ising universality class. The second ratio includes also dynamic critical amplitudes and is related to the Einstein--Kawasaki relation for the interdiffusion constant. Precise estimates of this amplitude ratio are difficult to obtain from MD simulations, but within the error bars our results are compatible with theoretical predictions and experimental values for model H'. Evidence is reported for an inverse proportionality of the pressure and the isothermal compressibility at the demixing transition, upon varying either the number density or the repulsion strength between unlike particles.Comment: 15 pages, 12 figure

    Graded Lie algebras with finite polydepth

    Get PDF
    If A is a graded connected algebra then we define a new invariant, polydepth A, which is finite if ExtA∗(M,A)≠0Ext_A^*(M,A) \neq 0 for some A-module M of at most polynomial growth. Theorem 1: If f : X \to Y is a continuous map of finite category, and if the orbits of H_*(\Omega Y) acting in the homology of the homotopy fibre grow at most polynomially, then H_*(\Omega Y) has finite polydepth. Theorem 2: If L is a graded Lie algebra and polydepth UL is finite then either L is solvable and UL grows at most polynomially or else for some integer d and all r, ∑i=k+1k+ddimLi≥kr\sum_{i=k+1}^{k+d} {dim} L_i \geq k^r, k≥k\geq some k(r)k(r)

    Sparsity-Sensitive Finite Abstraction

    Full text link
    Abstraction of a continuous-space model into a finite state and input dynamical model is a key step in formal controller synthesis tools. To date, these software tools have been limited to systems of modest size (typically ≤\leq 6 dimensions) because the abstraction procedure suffers from an exponential runtime with respect to the sum of state and input dimensions. We present a simple modification to the abstraction algorithm that dramatically reduces the computation time for systems exhibiting a sparse interconnection structure. This modified procedure recovers the same abstraction as the one computed by a brute force algorithm that disregards the sparsity. Examples highlight speed-ups from existing benchmarks in the literature, synthesis of a safety supervisory controller for a 12-dimensional and abstraction of a 51-dimensional vehicular traffic network

    The perception of emotion in artificial agents

    Get PDF
    Given recent technological developments in robotics, artificial intelligence and virtual reality, it is perhaps unsurprising that the arrival of emotionally expressive and reactive artificial agents is imminent. However, if such agents are to become integrated into our social milieu, it is imperative to establish an understanding of whether and how humans perceive emotion in artificial agents. In this review, we incorporate recent findings from social robotics, virtual reality, psychology, and neuroscience to examine how people recognize and respond to emotions displayed by artificial agents. First, we review how people perceive emotions expressed by an artificial agent, such as facial and bodily expressions and vocal tone. Second, we evaluate the similarities and differences in the consequences of perceived emotions in artificial compared to human agents. Besides accurately recognizing the emotional state of an artificial agent, it is critical to understand how humans respond to those emotions. Does interacting with an angry robot induce the same responses in people as interacting with an angry person? Similarly, does watching a robot rejoice when it wins a game elicit similar feelings of elation in the human observer? Here we provide an overview of the current state of emotion expression and perception in social robotics, as well as a clear articulation of the challenges and guiding principles to be addressed as we move ever closer to truly emotional artificial agents
    • …
    corecore